Identification	Subject	ME 351 Materials Science, 6 ECTS			
	Department	Mechanical Engineering			
	Program	Undergraduate			
	Term	Fall 2025			
	Instructor	Tarlan Farajov			
	E-mail:	Tarlan.farajov@khazar.org			
	Phone:	1 arran.rarajov(@knazar.org			
	Classroom/hours				
	Office hours				
Prerequisites					
	General Chemistry				
Language Compulsory/Elective	English				
Required textbooks and	Compulsory Materials Science and Engineering An Introduction (10th edition) W. D. Calliston				
course materials	Materials Science and Engineering, An Introduction (10th edition), W. D. Callister				
course materials	and D. G. Rethwisch				
	Introduction to Physical Metallurgy, Avner, Sidney HMcGraw-Hill				
Course outline	Materials science studies the relations between the structures and mechanical and				
	physical properties of materials. The duty of a materials scientist is to progress or				
	synthesize materials and new alloys, whereas a materials engineer is obligated to				
	develop new systems using present materials. Graduates of this course are trained to				
	be materials scientists and materials engineers.				
Course objectives	This course is designed to provide students with a fundamental understanding of				
	Physical Metallurgy, as well as an understanding of and acquaintance with the basics				
	of Physical Metallurgy, including Crystallization, Annealing, Heat treatments,				
	Equilibrium Diagram, etc.				
T			-1.1. 4		
Learning outcomes	On successful completion of this course, students will be able to:				
	1. Classify different materials				
	Classify different materials.				
	2. Understand the basic properties that characterize the behavior of materials.				
	3. Understand the type of loadings/environment that materials should withstand.				
	4. Select an appropriate type of material for a specific application.				
	5. Offer different approaches to modify structure/microstructure to get the desired properties.				
	6. Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, safety, manufacturability, and sustainability.				
Teaching methods	Lecture	-	V		
reaching methods	Group discussion		X X		
	Experiential exercise		X		
	Tutorials once a month on weekends				
	Case analysis and assignments Course paper				
	Others				
Evaluation	Methods	Date/deadlines	Percentage (%)		
L' minimion	Midterm Exam	Date/deadines	30		
	Class Participation		5		
	Classroom activity		5		
	Assignment		5		
	Quiz		15		
	Final Exam		40		
	Total		100		
Policy	• Ethics		100		
1 oney	- Edito				

Copying other students' work is highly discouraged. All assignments must be handled by the student himself. This is a university policy, and violators will be reprimanded accordingly.

Preparation for class

The structure of this course demands your individual effort outside the classroom for extra practice of many problems within the textbook. After each session, every student needs to put sufficient time to practice and finish the assignments by the predetermined date.

• Withdrawal (pass/fail)

This course strictly follows grading policy of the School of Engineering. Thus, a student is normally expected to achieve a mark of at least 60% to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism in handling the assignments, Mid-term and Final Examinations will lead to course failure. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly discouraged.

Attendance

Students who attend the sessions will get 5 marks. For three absence student loses 1 mark.

Assignment

There will be a homework assignment for every chapter composed of problems.

Quiz

There will be quizzes during the semester. The questions will be relevant to the previous weeks' topics. If you read your assignments weekly and you actively listen to the lectures and participate in the discussions, you will be successful in answering the quiz questions.

Final exam

The final exam in this course includes solving problems, definitions, and basic concepts of the course.

Tentative Schedule					
Week	Date/Day (tentative)	Topics	Textbook/Assignments		
1		Syllabus. Introduction to materials science and engineering.	Chap 1		
2		Metals Structure and Crystallization.	Chap 2		
3		Plastic Deformation.	Chap 3		
4		Annealing and Hot Working.	Chap 4		
5		Constitution of Alloys.	Chap 5		
6		Phase Diagrams.	Chap 6		

7	The Iron-Iron Carbide Equilibrium Diagram.	Chap 7
8	Review. Midterm exam	
9	The Heat Treatment of Steel	Chap 8
10	Cast Iron	Chap 11
11	Powder Metallurgy and Structures and properties of ceramics.	Chap 12
12	Corrosion of Metals.	Chap 14
13	Polymer structures.	Chap 15
14	Characteristics, Applications, and Processing of Polymers.	Chap 16
15	Failure Analysis	Chap 17
16	Final Exam	